Machine Learning
The process of learning begins with observations or data, such as examples, direct experience, or instruction, in order to look for patterns in data and make better decisions in the future based on the examples that we provide. The primary aim is to allow the computers learn automatically without human intervention or assistance and adjust actions accordingly.
But, using the classic algorithms of machine learning, text is considered as a sequence of keywords; instead, an approach based on semantic analysis mimics the human ability to understand the meaning of a text.
Some Machine Learning Methods
Machine learning algorithms are often categorized as supervised or unsupervised.Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.
Why Should We Learn Machine Learning?
Machine Learning today has all the attention it needs. Machine Learning can automate many tasks, especially the ones that only humans can perform with their innate intelligence. Replicating this intelligence to machines can be achieved only with the help of machine learning.
With the help of Machine Learning, businesses can automate routine tasks. It also helps in automating and quickly create models for data analysis. Various industries depend on vast quantities of data to optimize their operations and make intelligent decisions. Machine Learning helps in creating models that can process and analyze large amounts of complex data to deliver accurate results. These models are precise and scalable and function with less turnaround time. By building such precise Machine Learning models, businesses can leverage profitable opportunities and avoid unknown risks.
Image recognition, text generation, and many other use-cases are finding applications in the real world. This is increasing the scope for machine learning experts to shine as a sought after professionals.
How to get started with Machine Learning?
Some Terminology of Machine Learning:
- Model: Also known as “hypothesis”, a machine learning model is the mathematical representation of a real-world process. A machine learning algorithm along with the training data builds a machine learning model.
- Feature: A feature is a measurable property or parameter of the data-set.
- Feature Vector: It is a set of multiple numeric features. We use it as an input to the machine learning model for training and prediction purposes.
- Training: An algorithm takes a set of data known as “training data” as input. The learning algorithm finds patterns in the input data and trains the model for expected results (target). The output of the training process is the machine learning model.
- Prediction: Once the machine learning model is ready, it can be fed with input data to provide a predicted output.
- Target (Label): The value that the machine learning model has to predict is called the target or label.
- Overfitting: When a massive amount of data trains a machine learning model, it tends to learn from the noise and inaccurate data entries. Here the model fails to characterise the data correctly.
Underfitting: It is the scenario when the model fails to decipher the underlying trend in the input data. It destroys the accuracy of the machine learning model. In simple terms, the model or the algorithm does not fit the data well enough.
Steps of Machine Learning:
- There are 7 steps of machine learning:
- Gathering Data
- Preparing that data
- Choosing a model
- Training
- Evaluation
- Hyperparameter Tuning
- Predictions
0 Comments